F-actin mechanics control spindle centring in the mouse zygote

نویسندگان

  • Agathe Chaigne
  • Clément Campillo
  • Raphaël Voituriez
  • Nir S Gov
  • Cécile Sykes
  • Marie-Hélène Verlhac
  • Marie-Emilie Terret
چکیده

Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence Visualization of the Distribution of Microfilaments in Gonads and Early Embryos of the Nematode Caenorhabditis elegans

Several intracellular motility events in the Caenorhabditis elegans zygote (pseudocleavage, the asymmetric meeting of the pronuclei, the segregation of germ line-specific granules, and the generation of an asymmetric spindle) appear to depend on microfilaments (MFs). To investigate how MFs participate in these manifestations of zygotic asymmetry, the distribution of MFs in oocytes and early emb...

متن کامل

Spindle Positioning in Mouse Oocytes Relies on a Dynamic Meshwork of Actin Filaments

Female meiosis in higher organisms consists of highly asymmetric divisions, which retain most maternal stores in the oocyte for embryo development. Asymmetric partitioning of the cytoplasm results from the spindle's "off-center" positioning, which, in mouse oocytes, depends mainly on actin filaments [1, 2]. This is a unique situation compared to most systems, in which spindle positioning requir...

متن کامل

Tubulin and actin topology during zygote formation of Saccharomyces cerevisiae.

The topology of tubulin and actin during mating of Saccharomyces cerevisiae was analysed by fluorescence microscopy with the monoclonal anti-tubulin antibody Tu01 and rhodamine-labelled phalloidin. Preconjugatory cells displayed an asymmetric distribution of the microtubule and actin cytoskeleton and an overall polarization of the cells preceding cell fusion. Prior to karyogamy, the haploid spi...

متن کامل

Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans

Several intracellular motility events in the Caenorhabditis elegans zygote (pseudocleavage, the asymmetric meeting of the pronuclei, the segregation of germ line-specific granules, and the generation of an asymmetric spindle) appear to depend on microfilaments (MFs). To investigate how MFs participate in these manifestations of zygotic asymmetry, the distribution of MFs in oocytes and early emb...

متن کامل

A New Model for Asymmetric Spindle Positioning in Mouse Oocytes

An oocyte matures into an egg by extruding half of the chromosomes in a small polar body. This extremely asymmetric division enables the oocyte to retain sufficient storage material for the development of the embryo after fertilization. To divide asymmetrically, mammalian oocytes relocate the spindle from their center to the cortex. In all mammalian species analyzed so far, including human, mou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016